Acceleration Graph Practice

Answer the following questions regarding the graph:

1. Choose the correct word to describe the motion during each part of the journey.
a. O-A: The bus is \qquad . Its speed changes from 0 to \qquad m / s in \qquad seconds.
b. A-B: The bus is moving at a \qquad of $10 \mathrm{~m} / \mathrm{s}$ for \qquad seconds.
c. B-C: The bus is \qquad . It goes from $10 \mathrm{~m} / \mathrm{s}$ to \qquad in \qquad seconds.
d. C-D: The bus is \qquad . It has \qquad motion.
e. D-E: the bus is \qquad . It's speed increases.
f. E-F: The bus is moving at a \qquad speed of \qquad m / s.
2. During which part of the journey was the bus moving fastest?
3. During which part of the journey did the bus have the greatest acceleration?
4. Calculate the acceleration between D and E.

Answer the questions regarding the graph which shows the three runners (Albert, Bob and Charlie) ran a 100 meter race.

5. The graph shows \qquad .
6. Which runner won the race?
7. Which runner stopped for a rest?
a. Where did he stop?
b. How long did he stop?
8. How long did Bob take to complete the race?
9. Calculate Albert's average speed. (HINT: How far did he go compared to his overall time) $\mathrm{v}=\mathrm{d} / \mathrm{t}$
10. Calculate the accelerations of Bob and Albert. (distance $=1 / 2 a t^{2}+V i \quad$ OR $\quad a=\frac{v f-v i}{t f-t i}$
a) Bob
b) Albert

